
e Fermi National Accelerator Laboratory

FERMILAB-Conf-871230

CDF Detector Simulation*

J. Freeman
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

December 1987

*Presented at the Workshop on Detector Simulation for the SSC, Argonne, Illinois, August 23-28, 19X7.

Operated by Unlversltier Research Association Inc. under contract with the United States Department of Energy

CDF DETECTOR SIMULATION

J. Freeman

Fermi National Accelerator Laboratory’, Batavia, IL

Abstract

The Collider Detector at Fermilab (CDF) uses several different simulation pro-

grams, each tuned for specific applications. The programs rely heavily on the ex-
tensive test beam data that CDF has accumulated. Sophisticated shower parame-
t&&ions are used, yielding enormous gains in speed over full cascade programs.

1. INTRODUCTION

CDF has several distinct uses for detector simulation. It is very convenient to

have test data with known properties to use in verifying hardware readout or software

programs. Another function is to provide simulated data that models physics signals

for developing reconstruction algorithms (tracking or clustering), and for developing

physics analysis programs to identify, for example, t-quark signatures. Related to this

is modelling background to the physics signals. Another use for detector simulation is

to extrapolate detector performance to regions not explored by test beam.

In CDF we have chosen to use several different detector simulation programs

to achieve this list of goals, rather than a single, monolithic program. This choice

was driven by CPU-time performance requirements: “Computational excess baggage”

could be stripped out of the different programs without compromise to their utility. The

three programs used by CDF are: CDFSIM, the primary detector simulation, suitable

for modelling physics signal and background, and creating test data; QFL, a very

fast simulation useable for modelling physics signal events (and limited background

processes) for algorithm development and code verification; and GEANT, a program

useful for extrapolating detector performance to regions not measured in test beam.

The CPU time required to simulate a typical 9wojet” event are approximately:

CDFSIM - 50 VAX-780 seconds; QFL - 1 second; GEANT - 5000 seconds (GEANT,

because of its extreme CPU requirements, is not actually used to simulate full events,

but rather to simulate test beam conditions of a set of mono-energetic particles incident

on a specific point of the detector).

The different programs, due to their different functions, do not create the same

types of simulated data. Figure 1 shows schematically CDF data flow from the detector

hardware through pattern recognition and physics interpretation. The blocks are YBOS

banks. (YBOS is a data/memory management system used throughout CDF software

10perated by Universities Research Association under Contract with the U.S. Department of Energy

2

,

Object banks (muons, electrons,..)

Physics Algorithms

t

Figure 1. CDF Data Flow
from detector through
analysis

Segment Banks (tracks, clusters) Segment Banks (tracks, clusters)

t t

Pattern Recognition Pattern Recognition

t t

Calibrated Raw Data Bank Calibrated Raw Data Bank

Calibration of data Calibration of data

Detector Raw Data Banks Detector Raw Data Banks

Data Acquisition Program Data Acquisition Program

Hardware Electronics Memory Hardware Electronics Memory

[l].) Ovals represent data processing programs such as track-finding. CDFSIM, with

more detailed modelling of detector geometry, materials, and interactions, is used to

model the lower rungs of the data-flow ladder. (Pattern recognition will approximately

double the invested time per event.) QFL is used to model upper rungs for use in

algorithm debugging, and gaining quick (sometimes rough) understanding of the effects

of cuts. QFL, since it simulates the effects of tracking pattern recognition (rather than

simulating track-chamber hits, then applying true pattern recognition) would not be

suitable, for example, in studys of secondary vertex identification. GEANT, lying

totally outside of this picture, is used to generate histograms of, for instance, energy

deposition in an element of calorimetry.

QFL is described in detail in another paper in this volume [2], so for the remain-

der of this paper, we will concentrate primarily on CDFSIM.

2. OVERVIEW

Figure 2 shows the program flow chart for the main event loop. Subprograms

are indicated by bold type, and functionality in normal font. The simulation program

views the CDF detector and volume around it as composed of many regularly shaped

regions, with the boundary of one region also the boundary of its neighbor so that there

are no gaps. Any arbitrary point is therefore in some region. Each region is specified by

a a list of geometry constants which describes it spatially, and also by a list of regions

adjacent to it. The list of neighbors is ordered in such a manner that when a particle

leaves a detector, the most probable detector for it to hit next is first on the list. Last

on the list is the least probable detector. Since the detectors are dense with each other,

when the particle leaves one detector, we know that it has to enter another. We note

that some detectors are not interesting to simulate (for instance, regions of air outside

of the total detector volume). We know that when a particle has reached such a region,

it is no longer possible for it to generate new data in the detector. When a particle

reaches such a region, we forget about that particle and consider the next one.

All particles generated at the primary vertex are randomly assigned a path

length that they will travel before decaying (derived from an exponential probability

distribution which is a function of particle species and momentum); a conversion path

length; and an interaction path length. These values and running totals of accumulated

quantities are stored in a common block. This common stores the angular rotation of

the particle, the current time in nanoseconds since the primary collision, current region,

current local coordinate system, and other variables needed in the simulation of the

particle. As the particles are stepped along their paths they suffer energy loss by dE/dx,

bremsstrahlung, and delta-ray production, multiple scattering, pair production, decay,

and interaction. If a particle travels to its decay point, it undergoes decay and its

4

FIGURE 2. CDFSIM EVENT LOOP (SIMEV)

GETEU

Read in next GENP bank 4

1

c

1 RRluuRl

Form Raw Data Output Banks

Increment Particle counter

Test for completion of
event ?

I

f
YeS

Initialize particle constants

NEHTOT

Find Next Reoion I--

daughter particles are added to the particle list. If it reaches its interaction point,

secondaries are added to the particle list. When the particle passes through an active

region, for instance, drift chamber or calorimetry, hit information is stored. As the

event is simulated, a list of particle momenta and decay vertices is filled. After all

particles in the particle list have been tracked either out of the interesting volume, or

until they have stopped, the event is finished. At the end of simulation of the event,

there will be a set of banks containing lists of hit data, one bank per particle that

caused any data generation. Finally, the lists of hit data banks are analysed to form

the set of detector “Raw Data” banks ss would be read out by the hardware.

3. GEOMETRY

The simulation geometry is contained in a geometry database that is accessed

at program startup. It is composed of a set of about 500 YBOS banks. Each region

in CDF has a YBOS geometry bank associated with it. Contained in the bank are the

type of the region (i.e. chamber or inert material); the shape of the region, and its

boundary locations; the transformation matrix and displacement vector that transform

CDF global coordinates into the local coordinate system of the region; material type

for the region; step size for particle stepping; chaining pointers to link the region to

subregions interior to it; and other miscellaneous constants that are relevant to the

region in question. Access to the data base is through function calls with arguments

selecting the region and property desired. Function calls, although generating cpu

overhead, protect against possible future reorganizations of the geometry database.

Figure 3 shows output of a display program that is driven by the geometry database.

This gives an indication of the number of regions and shapes used by the program.

A part of the data base is a list for each region of all regions that are adjacent

to it spatially. This list searched through upon exitting from a region to find the next

region. The list is ordered from the most probable region to enter to the least probable.

In general, the search is satisfied on the first test. A subroutine with input argument

the region exitted, and output the region entered, is used by the simulation to access

this part of the data base.

The number and types of boundaries for some pm-defined shapes are included as

a part of the geometry data base. For each shape described, the number of planes that

define the minimum and maximum extent of the shape, and the type of each plane (for

instance, plane of constant Z or 4) is specified. Examples of predefined shapes include:

wedge, truncated cone with cylindrical hole, or rectangular solid with rectangular hole.

Any shape composed of arbitrary combinations of planes of (XYZ, radius, 8, 4) can be

defined in this part of the data base. Only shapes revelant to CDF are actually present.

A subroutine is used to test if a test point is inside or outside of a 3-dimensional region.

4. MATERIALS

A data base of materials is part of the geometry data base. The data base

contains the density, radiation length, absorption length, Z, A, ionization potential,

collision length, and critical energy for each material. There are about 30 materials

specified. Access to the material properties is through a function call with arguments

the material type, property desired, and the position to determine it at. In general, each

region is a homogeneous material. Where the approximation of homogeneous material

properties is invalid, the region is articially split into enough regions of differing material

types to make the approximation good.

In cases where the fine structure of the region is important but where perfor-

mance penalties of splitting the region into many subregions cannot be afforded, the

fine structure of the material is encoded into the function that accesses material prop-

erties. There are a handful of special cases like this, in general close to the interaction

vertex. The most important special case is the vertex TPC, where cables, amplifier

hybrids, and structural supports are encoded into the function.

5. MAGNETIC FIELD

The magnetic fields of the central solenoid and the forward muon toroids deter-

mined by field mapping are stored in a data base. The data base is accessed at run

startup. When required, the B field is determined by a call to a subroutine. Input

is the space point where the field is desired, and the local coordinate system the field

should be determined in. Output is a 4-vector of XYZ components of the field direction

unit-vector, and the field magnitude.

6. CALIBRATION CONSTANTS

CDF possesses a calibration data base, where all calibration constants used to

convert electronics counts to physical units (time, position, or energy) reside. The

data base is accessed by specifying the run number to fetch constants for. CDFSIM

uses this data base to fetch these constants for use in simulation. Constants are fetched

for the run to be simulated (default is run l), and the inverse of these are used in cal-

culating electronics counts. This technique guarantees automatic consistency between

simulation and analysis. In addition, it also insures that code that works on real data

also will work using simulated data.

‘7. PARTICLE TRACKING

Figure 4 shows a flow chart for tracking particles through a generic region.

Initally, the routine checks to see if the detector to be simulated is a terminating re-

gion outside of CDF. If so, the particle ends, and control is returned to the calling

program. After transforming the 6-component particle position-momentum into local

coordinates, a loop of stepping the particle through the volume is entered. An appro-

priate step size is calculated, taking into account the particle position, momentum, and

charge, the current detector, distance remaining before interaction or decay. The local

B field is determined. The particle is transported through the displacement, and the

new XYZ position of the particle is tested to see if it is still in the region. If it is, effects

corresponding to the step are imposed on the particle (energy loss or multiple scat-

tering, for instance). If the region is instrumented to make measurements (a chamber

or calorimeter for instance), a routine is called to calculate hits and append them onto

the LISP bank. Then a new step size is calculated, and so on.

If the step has transported the particle outside of the region, the last step is

undone, and a routine is called to calculate the displacement to the boundary of the

region, step the particle to the exit point, transform back into global coordinates, and

return. The routine does analytic calculation of the exit step whenever possible (if the

B field is 0, if the particle is neutral, or if the equation of the intersection of the particle’s

motion in the local B field and the boundary to be exitted is analytically soluble). If

analytic calculation is not possible, the routine uses an iterative stepping/interpolation

procedure to calculate the exit point.

8. TRACKING CHAMBER SIMULATION

If the region currently being stepped through is a tracking chamber, intersec-

tions of the particle trajectory and layers of wires are calculated for all layers that

are intersected during the step. The hit data stored for each intersection include the

distance of closest approach in the drift plane between the track and wire, charge de-

posited, and 4 and 6’ inclination angles. After all particles have been simulated, the

hit data may be transformed into detector oriented data. All data for each wire of the

chamber is put together, and time-ordered. Resolution smearing is done. For the large

volume central tracking chamber (CTC), the effect of finite signal propagation along

the sense wires is simulated. Pulse length is simulated using the inclination of the track

relative to the drift cell. Inefficiency, noise, and dead time are applied to the data, and

the remaining hit times are formatted into the raw data bank. In parallel, the auxillary

pointer banks linking raw data to/from the data list banks are generated. ADC banks

are formed for chambers which have pad or charge-division readout.

FIGURE 4. FLOWCHART FOR DETSIM
Region Simulation

Terminating Region ? RetUl-bl

t

TRRNSF

Trarsform into tocal coordinates

c

+ GETSTP

Find step size

4

INUTRN

Transform into global cuords.

t
EFFECT

Impose effects of last step

BFIELO

Get local B field

c

STEP

Transport particle

t
STEP

Transport partlcle

t
EHLOC

Calculation of Exit Step

I I
t

I EHTO ET
I INSlOE

Test tt still inside region ?
I

Take particle to Exit Point
I

4 Yes

I EFFECT

1 lmposeeffect~laststep J

Has parlicle ended?

10

9. CALORIMETRY SIMULATION

As the particle is stepped through different detector elements, the number of ra-

diation lengths and interaction lengths traversed is incremented. If the particle reaches

a pre-determined depth of radiation/interaction lengths, it interacts. Interactions up-

stream of tracking devices generate a list of secondaries which are added to the list

of particles to be simulated. Interactions inside of calorimetry are treated differently.

There, a parameterized shower model is used. The centroid of the shower can be

thought of ss a neutral particle travelling in the same direction as the particle im-

mediately before showering. This neutral “shower-particle” is stepped through the

various detector elements exactly as a regular particle would be. As the stepping takes

place, running totals of the number of grams/cmz, radiation lengths, and interaction

lengths traversed are kept. The shower development is parameterized in terms of these

quantities.

After each step along the shower-particle’s path, the shower particle undergoes

energy loss by integrating the longitudinal shower profile over the number of interaction

lengths and radiation lengths in the previous displacement. The energy calculated to

be lost by the particle is stored in two parts: the electromagnetic energy loss; and the

hadronic energy loss. (Electromagnetic showers have no hadronic energy content, while

hadronic showers are a mixture of both.) If the current region is a calorimeter, the

energy lost in the current step is deposited in the struck calorimetry tower and its 8 (or

24 depending on the ratio of transverse shower size to tower size at that depth) neighbor

calorimetry towers. To do this transverse sharing of energy between pads, the tranverse

shower development as a function of grams of material per square centimeter traversed

since the shower start is calculated. Energy deposition into cracks is also simulated here,

by integrating the transverse profile of the shower over the effective area of the crack.

Statistical fluctuations are put into the simulation by calculating the effective number of

minimum ionizing particles the deposited energy corresponds to, and applying Gaussian

or Poisson fluctuations to that. Detector-dependent intrinsic EM/hadron response

differences are simulated, as well as effects such as light attenuation in scintillator

plastic. This process of stepping, energy loss, and energy sharing and deposition in

calorimetry continues until the particle runs out of energy or exits the calorimeter. At

this time, the tower-by-tower sums of energy, as well ss timing information for towers

instrumented by phototubes are stored in the data list bank for future use. If the

shower exits from the CDF volume (i.e. leakage), a leakage record is added to the data

list for that particle. In addition, the sum of energy lost by the particle in dead regions

is also stored. Figure 5 shows the program flow for shower simulation. After the event

is simulated, a final stage of processing the data list banks creates raw data banks, and

FIGURE 5. FLOWCHART FOR SHOWER SIMULATION

SHDSET

STEP

Transport ‘shower particle I

PSHRRE

Transverse energy sharing
I

I ENDEP

Deposit Energy (LISP)
I

I I
I

12

auxillary pointer banks.

A problem of the technique of shower modelling is that there is danger in ex-

tending the model to energies far from those measured by test beam. CDF was unable

to find very low energy test beams (0.4 to 5 GeV) to calibrate its detectors in, so the

response for these energies can only be estimated. There is an ongoing effort to use

isolated charged tracks with momentum determined in the tracking chamber from real

events to probe this region. This study, when completed, will give us confidence about

the low energy parameterization of showers. A detailed description of the electromag-

netic and hadronic shower models is presented in reference [3].

10. INPUT

Event records from the various event generators used by CDF (ISAJET, PYTHIA,

MBR) are translated into a uniform event bank structure before simulation. The trans-

lation involves translating particle species ID’s and the particle evolution history into

CDF standard.

CDFSIM (and QFL) also allow the user to “short-circuit” the event generation,

and directly simulate events of arbitrary topology that they themselves create. The

“fake event” subroutine, called after the event generator created event is read into the

program, allows the user to edit the original event, or totally replace it with a new one.

This routine can be used to create events with well-defined properties, for instance,

with a single electron of Ptot.l = 100 GeV, at 6’ = 90 degrees, and 4 = 0 degrees.

The utility of creating specially tailored data banks for hardware/software debugging

is obvious.

11. CREATED INFORMATION

The output of the simulation is a set of YBOS banks. User-set input flags to

the simulation specify which of the possible YBOS banks are to be saved in the event

record. There are four sorts of data that the simulation creates: System data; particle

evolution history (the physical particles, daughters, and vertices) of the event; detector

data (the “raw data” banks of the simulated detector); and “data history” , the data

list banks, and pointer banks that link the data lists and the raw data banks.

A set of system data banks is produced for program control, and use in debug-

ging. The run header bank contains all user-set input conditions to document what

was actually asked of the simulation. The logical record bank contains the run/event

number, and process creation code (i.e. simulation or real CDF data) and creation

time. The event classification bank contains seeds for random number generators for

the start of the event; the event weight; and other bookkeeping details.

13

The complete chain of parent-daughters, and associated vertices are stored in

a particle bank, and a vertex bank. The particle bank contains: The total number of

particles in the event; for each particle the momenta, mass, particle type, pointer to

originating vertex, pointer to terminating vertex, path length travelled, and termination

code (for example, decayed, showered, or punched through). The vertex bank contains:

the total number of vertices of the event; and for each vertex, the X,Y,Z of the vertex,

the time in nanoseconds since the primary interaction of the vertex creation, parent

pointer, and daughter pointers.

The simulation creates (on demand) all raw data YBOS banks that can be read

out by the data acquisition system. All banks have structure identical to the real CDF

data.

As well ss producing raw data banks, CDFSIM records a data history to help in

analysis. The data list banks, ss mentioned earlier, contain for each particle, the full

set of hits and energy depositions made ss the particle passed through the detector.

There are also auxiliary banks that link from raw data to the data lists, and from

the data lists to raw data. Use of these banks allows complete knowledge about, for

example, which drift chamber hits on a reconstructed track come from which particles,

or how much energy in a calorimetry cluster is due to a given parton. These banks

are invaluable for tuning pattern recognition programs, and for associating detector

response to the underlying physics.

12. QFL

The QFL is designed to be extremely fast simulation of CDF that is used for

initial physics studies to gain a feel for what is important, and what can or cannot work.

Although it is new to the collaboration, it has become very popular because a rough

answer can be reached in a few minutes of CPU time, rather than a more refined answer

from CDFSIM, but requiring 100 times longer to reach. However, due to simplifying

assumptions designed to speed up the program, it cannot be used in all cases. The

simplified geometry of QFL is a cylindrical volume with uniform axial magnetic field,

surrounded by spherical shells of Eelctromagnetic and hadronic calorimetry.

After randomly determining the Z of the primary event vertex, the QFL sim-

ulation of CDF tracks particles into the calorimetry. Particle rotation in the central

solenoidal field is simulated. Particles may decay in flight, adding daughters to the par-

ticle list. After exitting the central tracking volume, the particle strikes the calorimeter

(assumed to be a spherical shell with EM calorimeter 20 Xo thick, followed by a hadron

calorimeter 5 Xe thick). The particle travels to its pm-thrown interaction point (the

same code as CDFSJM) or punches through without interacting. At the interaction

point, a shower parameterization is generated (the same longitudinal model as used

14

by CDFSIM, but a simplified triangle-function transverse profile). Energy deposition

is calculated by integration of the longitudinal profile over the step (the same code

as CDFSIM). Transverse sharing between towers is calculated by integrating the tri-

angle function over the tower geometry. Cracks are simulated by attenuated energy

deposition in that region, but no enhanced probability of punch-through (as CDF-

SIM does have). Gaussian fluctuations generate detector resolution. A global intrinsic

EM/Hadron response ratio is assumed. Hadron response non-linearity due to increasing

?rs content ss a function of energy is simulated (as it is in CDFSIM). Not simulated

in QFL are hadronic or EM interactions that would generate additional particles in

the particle list, or the effect of materials, like dE/dx or multiple scattering. After

event simulation, the particle list is reformed into the particle and vertex banks (the

same code as CDFSIM). Raw data for the various detectors is not created. Rather,

for tracking chambers, track segment banks are formed. Performance of tracking and

pattern recognition are simulated using the path length and angle of passage of the

track through the chamber. The bank of solid-angle ordered energy depositions in the

calorimetry is formed. QFL works very well for studies involving principally calorime-

try (Jets, for instance). It does worse when tracking pattern recognition becomes

important. Work is in progress to improve the tracking pattern recognition simulation,

but since chamber hits are not simulated, it is not clear how accurate the program can

be made.

Reference8

1. D. Quarrie, YBOS Programmer’s Reference Manual, CDF internal note 156.

2. C. Newman-Holmes and J. Freeman, A Fast Calorimetry Simulation for the SSC,

this volume and FNAL/CONF/87-231

3. J. Freeman and A. Beretvas, A Short Review of the CDF Electromagnetic and

Hadronic Shower Simulation, Snowmass SSC Proceedings, 1986.

